Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.500
Filtrar
1.
Food Chem ; 449: 139223, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604032

RESUMO

Recently some major safety concerns have been raised on organic contaminants in widely consumed plants such as coffee. Hence, this study aimed to develop specifically optimized methods for determining organic contaminants, such as pesticides and polychlorinated biphenyls (PCBs), in coffee using GC-MS/MS and LC-MS/MS. QuEChERS method was used as a base extraction method, and 27 experiments were studied using design of experiments with categorical variables (extraction buffers, cleanup sorbents, and coffee roasting degree) to find the optimum method for each matrix type. The optimum method for green coffee was acetate buffer and chitosan for clean-up, while no-buffer extraction and the PSA + C18 method were ideal for light and dark-roasted coffee. The optimized methods were validated in accordance with SANTE/11312/2021. Furthermore, ten real samples (4 green, and 6 roasted) from the markets were analysed; ortho-phenylphenol was found in all the roasted coffee samples, and carbendazim was found in one green coffee sample.


Assuntos
Coffea , Café , Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Café/química , Contaminação de Alimentos/análise , Coffea/química , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Cromatografia Líquida/métodos , Ensaios de Triagem em Larga Escala/métodos , Praguicidas/análise , Praguicidas/química
2.
Environ Sci Technol ; 58(1): 258-268, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38149779

RESUMO

Dioxin(-like) exposures are linked to adverse health effects, including cancer. However, metabolic alterations induced by these chemicals remain largely unknown. Beyond known dioxin(-like) compounds, we leveraged a chemical-wide approach to assess chlorinated co-exposures and parent compound products [termed dioxin(-like)-related compounds] among 137 occupational workers. Endogenous metabolites were profiled by untargeted metabolomics, namely, reversed-phase chromatography with negative electrospray ionization (C18-negative) and hydrophilic interaction liquid chromatography with positive electrospray ionization (HILIC-positive). We performed a metabolome-wide association study to select dioxin(-like) associated metabolic features using a 20% false discovery rate threshold. Metabolic features were then characterized by pathway enrichment analyses. There are no significant features associated with polychlorinated dibenzo-p-dioxins (PCDDs), a subgroup of known dioxin(-like) compounds. However, 3,110 C18-negative and 2,894 HILIC-positive features were associated with at least one of the PCDD-related compounds. Abundant metabolic changes were also observed for polychlorinated dibenzofuran-related and polychlorinated biphenyl-related compounds. These metabolic features were primarily enriched in pathways of amino acids, lipid and fatty acids, carbohydrates, cofactors, and nucleotides. Our study highlights the potential of chemical-wide analysis for comprehensive exposure assessment beyond targeted chemicals. Coupled with advanced endogenous metabolomics, this approach allows for an in-depth exploration of metabolic alterations induced by environmental chemicals.


Assuntos
Dioxinas , Neoplasias , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Metaboloma
3.
Toxicology ; 500: 153677, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995827

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that ubiquitously exist in the environment. PCB exposure has been linked to cancer and multi-system toxicity, including endocrine disruption, immune inhibition, and reproductive and neurotoxicity. 2,2',5,5'-Tetrachlorobiphenyl (PCB 52) is one of the most frequently detected congeners in the environment and human blood. The hydroxylated metabolites of PCB 52 may also be neurotoxic, especially for children whose brains are still developing. However, it is challenging to discern the contribution of these metabolites to PCB neurotoxicity because the metabolism of PCB is species-dependent. In this study, we evaluated the subacute neurotoxicity of a human-relevant metabolite, 2,2',5,5'-tetrachlorobiphenyl-4-ol (4-52), on male adolescent Sprague Dawley rats, via a novel polymeric implant drug delivery system grafted subcutaneously, at total loading concentrations ranging from 0%, 1%, 5%, and 10% of the implant (w/w) for 28 days. Y-maze, hole board test, open field test, and elevated plus maze were performed on exposure days 24-28 to assess their locomotor activity, and exploratory and anxiety-like behavior. 4-52 and other possible hydroxylated metabolites in serum and vital tissues were quantified using gas chromatography with tandem mass spectrometry (GC-MS/MS). Our results demonstrate the sustained release of 4-52 from the polymeric implants into the systemic circulation in serum and tissues. Dihydroxylated and dechlorinated metabolites were detected in serum and tissues, depending on the dose and tissue type. No statistically significant changes were observed in the neurobehavioral tasks across all exposure groups. The results demonstrate that subcutaneous polymeric implants provide a straightforward method to expose rats to phenolic PCB metabolites to study neurotoxic outcomes, e.g., in memory, anxiety, and exploratory behaviors.


Assuntos
Neoplasias , Síndromes Neurotóxicas , Bifenilos Policlorados , Criança , Ratos , Humanos , Masculino , Adolescente , Animais , Bifenilos Policlorados/química , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Síndromes Neurotóxicas/etiologia
4.
Environ Sci Technol ; 57(43): 16386-16398, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856784

RESUMO

Growth of organohalide-respiring bacteria such as Dehalococcoides mccartyi on halogenated organics (e.g., polychlorinated biphenyls (PCBs)) at contaminated sites or in enrichment culture requires interaction and support from other microbial community members. To evaluate naturally occurring interactions between Dehalococcoides and key supporting microorganisms (e.g., production of H2, acetate, and corrinoids) in PCB-contaminated sediments, metagenomic and metatranscriptomic sequencing was conducted on DNA and RNA extracted from sediment microcosms, showing evidence of both Dehalococcoides growth and PCB dechlorination. Using a genome-resolved approach, 160 metagenome-assembled genomes (MAGs), including three Dehalococcoides MAGs, were recovered. A novel reductive dehalogenase gene, distantly related to the chlorophenol dehalogenase gene cprA (pairwise amino acid identity: 23.75%), was significantly expressed. Using MAG gene expression data, 112 MAGs were assigned functional roles (e.g., corrinoid producers, acetate/H2 producers, etc.). A network coexpression analysis of all 160 MAGs revealed correlations between 39 MAGs and the Dehalococcoides MAGs. The network analysis also showed that MAGs assigned with functional roles that support Dehalococcoides growth (e.g., corrinoid assembly, and production of intermediates required for corrinoid synthesis) displayed significant coexpression correlations with Dehalococcoides MAGs. This work demonstrates the power of genome-resolved metagenomic and metatranscriptomic analyses, which unify taxonomy and function, in investigating the ecology of dehalogenating microbial communities.


Assuntos
Chloroflexi , Microbiota , Bifenilos Policlorados , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Chloroflexi/genética , Chloroflexi/química , Chloroflexi/metabolismo , Anaerobiose , Biodegradação Ambiental , Acetatos/metabolismo , Sedimentos Geológicos/análise
5.
SAR QSAR Environ Res ; 34(4): 267-284, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139950

RESUMO

Some adverse effects of hydroxylated polychlorinated biphenyls (OH-PCBs) in humans are presumed to be initiated via thyroid hormone receptor (TR) binding. Due to the trial-and-error approach adopted for OH-PCB selection in previous studies, experiments designed to test the TR binding hypothesis mostly utilized inactive OH-PCBs, leading to considerable waste of time, effort and other material resources. In this paper, linear discriminant analysis (LDA) and binary logistic regression (LR) were used to develop classification models to group OH-PCBs into active and inactive TR agonists using radial distribution function (RDF) descriptors as predictor variables. The classifications made by both LDA and LR models on the training set compounds resulted in an accuracy of 84.3%, sensitivity of 72.2% and specificity of 90.9%. The areas under the ROC curves, constructed with the training set data, were found to be 0.872 and 0.880 for LDA and LR models, respectively. External validation of the models revealed that 76.5% of the test set compounds were correctly classified by both LDA and LR models. These findings suggest that the two models reported in this paper are good and reliable for classifying OH-PCB congeners into active and inactive TR agonists.


Assuntos
Bifenilos Policlorados , Humanos , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/farmacologia , Glândula Tireoide/metabolismo , Relação Quantitativa Estrutura-Atividade , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios , Hidroxilação
6.
Water Res ; 236: 119978, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084576

RESUMO

Activated carbon (AC) has been applied widely in water treatment as a strong sorbent for organic contaminants and, more recently, in-situ treatment and capping for remediating legacy contaminants. In some sediment environments, the sorption kinetics onto AC may significantly impact remedial performance, particularly for large, highly hydrophobic contaminants such as PCBs, but there is limited kinetic data on such compounds. In this study, batch experiments were conducted over 52 weeks to measure PCB adsorption kinetics on 2 ACs in granular (1.1 mm diameter) and powdered (0.02 mm) form using polydimethylsiloxane (PDMS) fibers to measure aqueous concentrations over time. The experiment was conducted in glass containers with water at known PCB concentration and containing 10 mg/L natural organic matter (NOM) and activated carbon. Blanks without activated carbon were used to estimate kinetics and equilibrium uptake to PDMS and NOM. The PDMS measured aqueous concentration in AC containing slurries was then used to estimate kinetics and equilibrium uptake of the various PCBs onto the AC. Achieving equilibration of PCBs onto the powdered activated carbon (PAC) was accomplished in days to weeks, but granular activated carbon (GAC) uptake was not complete for some high molecular weight congeners in a year. The data were used to fit linear driving force models with both linear and Freundlich models of equilibrium. The models were then used to predict uptake onto powdered and granular AC during in-situ capping and treatment using the CapSim model. Slow kinetics can significantly limit the performance of granular AC in high upwelling (> 1-10 cm/day) environments. This study demonstrates the usage of polymeric passive samplers to explore sorption kinetics and equilibrium for low solubility compounds as well as the differences in performance of granular and powdered forms of AC for remediation of PCB contaminated sediment.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/química , Carvão Vegetal/química , Pós , Sedimentos Geológicos/química , Cinética , Adsorção , Poluentes Químicos da Água/química
7.
Environ Sci Technol ; 57(12): 4763-4774, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926860

RESUMO

Polychlorinated biphenyl compounds (PCBs) are highly toxic organic chemicals still prevalent in the environment. While global inventories of the use and emissions of PCBs have been developed, estimates for individual countries determined using bottom-up approaches are few and often show different trends from the global inventory. Here, we determine the past, present, and future consumption and emissions of PCBs in India. A mass balance model was used to estimate middle (low-high) emissions in the period 1950-2100. Up to 7296 tonnes of PCBs have been used in transformers. PCBs imported as wastes are estimated to be approximately 5000 (2400-9100) tonnes. Total emissions from the use and disposal of transformers, industrial processes, and imported waste disposal are estimated to become 13 (0.1-537) tonnes, 89.26 (0.5-178) tonnes, 63 (3-910) tonnes, respectively, in the period 1950-2100. Congener-specific emissions are relatively high for low-chlorinated PCBs (-8, 18, 28, 31, 52, 101, 110, 118, 153, range: 0.1-118 tonnes). We find that industrial emissions are becoming important sources of PCBs and may become predominant, depending on emission scenarios.


Assuntos
Bifenilos Policlorados , Eliminação de Resíduos , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Monitoramento Ambiental , Compostos de Bifenilo , Índia
8.
ISME J ; 17(5): 660-670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36765150

RESUMO

Organohalide pollutants are prevalent in coastal regions due to extensive intervention by anthropogenic activities, threatening public health and ecosystems. Gradients in salinity are a natural feature of coasts, but their impacts on the environmental fate of organohalides and the underlying microbial communities remain poorly understood. Here we report the effects of salinity on microbial reductive dechlorination of tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) in consortia derived from distinct environments (freshwater and marine sediments). Marine-derived microcosms exhibited higher halotolerance during PCE and PCB dechlorination, and a halotolerant dechlorinating culture was enriched from these microcosms. The organohalide-respiring bacteria (OHRB) responsible for PCE and PCB dechlorination in marine microcosms shifted from Dehalococcoides to Dehalobium when salinity increased. Broadly, lower microbial diversity, simpler co-occurrence networks, and more deterministic microbial community assemblages were observed under higher salinity. Separately, we observed that inhibition of dechlorination by high salinity could be attributed to suppressed viability of Dehalococcoides rather than reduced provision of substrates by syntrophic microorganisms. Additionally, the high activity of PCE dechlorinating reductive dehalogenases (RDases) in in vitro tests under high salinity suggests that high salinity likely disrupted cellular components other than RDases in Dehalococcoides. Genomic analyses indicated that the capability of Dehalobium to perform dehalogenation under high salinity was likely owing to the presence of genes associated with halotolerance in its genomes. Collectively, these mechanistic and ecological insights contribute to understanding the fate and bioremediation of organohalide pollutants in environments with changing salinity.


Assuntos
Chloroflexi , Poluentes Ambientais , Microbiota , Bifenilos Policlorados , Chloroflexi/genética , Salinidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Biodegradação Ambiental , Desempenho Físico Funcional
9.
Microb Ecol ; 86(3): 1696-1708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36646913

RESUMO

Polychlorinated biphenyls (PCBs) are recognized as persistent organic pollutants and accumulate in organisms, soils, waters, and sediments, causing major health and ecological perturbations. Literature reported PCB bio-transformation by fungi and bacteria in vitro, but data about the in situ impact of those compounds on microbial communities remained scarce while being useful to guide biotransformation assays. The present work investigated for the first time microbial diversity from the three-domains-of-life in a long-term contaminated brownfield (a former factory land). Soil samples were ranked according to their PCB concentrations, and a significant increase in abundance was shown according to increased concentrations. Microbial communities structure showed a segregation from the least to the most PCB-polluted samples. Among the identified microorganisms, Bacteria belonging to Gammaproteobacteria class, as well as Fungi affiliated to Saccharomycetes class or Pleurotaceae family, including some species known to transform some PCBs were abundantly retrieved in the highly polluted soil samples.


Assuntos
Bifenilos Policlorados , Poluentes do Solo , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Poluentes do Solo/análise , Biodegradação Ambiental , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , Solo/química
10.
Mini Rev Med Chem ; 23(13): 1390-1411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515022

RESUMO

A class of organic chemicals known as polychlorinated biphenyls (PCBs) consists of chlorine, hydrogen, and carbon atoms. High boiling points, chemical stability, non-flammability, and insulating properties have enabled them to be used in various industries. Because of their high toxicity, PCBs were one of the first industrial compounds to be banned from production. These compounds have high-fat solubility with bioaccumulation and biomagnification properties in the environment, food chain, and individuals. Hence, they may have an impact not only on individual organisms but ultimately on whole ecosystems. The main sources of PCB exposure are food and environmental pollutants. In the toxicology of PCBs, oxidative stress plays the most influential function. The induction of CYP1A1 due to the high affinity of PCBs for aryl hydrocarbon receptors is considered a trigger for oxidative stress. Production of reactive oxygen species and depletion of glutathione occur due to phase Ⅰ and Ⅱ metabolism, respectively. Thus, cellular redox balance may be disrupted in the presence of PCBs and their metabolites. Chronic and long-term exposure to these compounds can often lead to life-threatening diseases, like diabetes, obesity, cardiovascular and neurological diseases, cancer, and reproductive and endocrine disorders. We present the current knowledge of the routes of PCB exposure and bioaccumulation, the outlook regarding environmental and food safety, the potential role of PCBs in various diseases, the principal mechanisms responsible for PCB toxicity, and the main detection techniques used for PCBs.


Assuntos
Neoplasias , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Ecossistema , Monitoramento Ambiental , Inocuidade dos Alimentos
11.
Waste Manag Res ; 41(1): 182-194, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35876087

RESUMO

Polychlorinated biphenyls (PCBs) were broadly applied worldwide as electrical insulators in transformers and power capacitors, due to their high dielectric constant and non-flammability. They were often added to mineral oils (MOs) and used as dielectric fluids, which are nowadays classified as hazardous waste. Indeed, the Stockholm Convention aims to eliminate the use of equipment with PCB content greater than 0.005 wt-% (=50 ppm) by 2025. Accurate identification and quantification of small traces of PCBs contained in MO thus represent a great analytical challenge. To achieve this goal, a simple, cost-effective and fast chromatographic process was developed to separate PCBs from MO, allowing to obtain reliable data to determine the concentration of PCBs, reduced to 2-3 ppm. Experimental and analytical methods, such as thin layer chromatography, column chromatography as well as gas chromatography coupled with mass spectroscopy, were applied to acquire a high level of qualitative and quantitative determination of PCBs in transformer MOs.


Assuntos
Bifenilos Policlorados , Bifenilos Policlorados/química , Óleo Mineral , Fontes de Energia Elétrica
12.
Crit Rev Anal Chem ; 53(4): 928-953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35086387

RESUMO

Polychlorinated biphenyls (PCBs), a class of synthetic organochlorine chemicals, were broadly employed in industrial and commercial applications in the last century due to their good thermal and chemical stability. However, PCBs have a great influence on both individual organism and the entire ecosystem. It has been proven that PCBs pose potential risks to human health with neurotoxicity, carcinogenicity, reproductive toxicity, immunotoxicity, hepatotoxicity, and cardiovascular toxicity. Moreover, PCBs exhibit the long-range transport effect on the global scale and bio-enrichment effect along the food chains. This review mainly encompasses recent progress on the toxicity and detection techniques of PCBs in environment and foodstuffs. First of all, we highlighted the latest improvements and achievements of the classification, source, distribution, and toxicity of PCBs. Then, comprehensive summaries of the current technologies for sample preparation (e.g., SPE, DSPE, SPME and SBSE) and analytical determination (e.g., GC-ECD, GC-MS, GC-HRMS, HPLC-MS/MS and sensing technologies) were given. In the end, the shortcomings and prospects of the pretreatment methods for PCBs analysis as well as the future opportunities and challenges are tentatively discussed.


Assuntos
Bifenilos Policlorados , Humanos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/química , Espectrometria de Massas em Tandem/métodos , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão
13.
J Chem Phys ; 157(18): 184302, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379799

RESUMO

This article presents a new reactive potential in the ReaxFF formalism. It aims to include the chlorine element and opens up the fields of use of ReaxFF to the whole class of organochloride compounds including conjugated or aromatic groups. Numerous compounds in this family raise global awareness due to their environmental impact, and such a reactive potential will help investigate their degradation pathways. The new force field, named CHONCl-2022_weak, belongs to the aqueous branch. The force field parameters were fitted against high-level quantum chemistry calculations, including complete active space self-consistent field/NEVPT2 calculations and density functional theory calculations, and their accuracy was evaluated using a validation set. The root means square deviation against quantum mechanics energies is 0.38 eV (8.91 kcal mol-1). From a structural point of view, the root means square deviation is about 0.06 Å for the bond lengths, 11.86° for the angles, and 4.12° for the dihedral angles. With CHONCl-2022_weak new force field, we successfully investigated the regioselectivity for nucleophilic or electrophilic attacks on polychlorinated biphenyls, which are toxic and permanent pollutants. The rotation barriers along the bond linking the two benzene rings, which is crucial in the toxicity of these compounds, are well reproduced by CHONCl-2022_weak. Then, our new reactive potential is used to investigate the chlorobenzene reactivity in the presence of hydroxyl radicals in atmospheric condition or in aqueous solution. The reaction pathways computed with ReaxFF agree with the quantum mechanics results. We showed that, in the presence of dioxygen molecules, in atmospheric condition, the oxidation of chlorobenzene likely leads to the formation of highly oxygenated compounds after the abstraction of hydrogen radicals. In water, the addition of a hydroxyl radical leads to the formation of chlorophenol or phenol molecules, as already predicted from plasma-induced degradation experiments.


Assuntos
Compostos Orgânicos , Bifenilos Policlorados , Água/química , Bifenilos Policlorados/química , Hidrogênio , Clorobenzenos
14.
Eur J Med Chem ; 244: 114845, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274276

RESUMO

The aryl hydrocarbon receptor (AhR), discovered 46 years ago, is a transcript factor member of the basic helix-loop-helix Per-ARNT-SIM (bHLH-PAS) family deeply implicated in health and diseases, and is traditionally associated with the metabolism of xenobiotic ligands. Recently, multiple and structurally diverse ingredients including amino acid metabolites, polyphenols, flavonoids, polyhydroxyalkanoates, polychlorinated biphenyls, and, triarylmethanes have been evaluated as AhR potential ligands, and there is increasing attention on AhR as an appealing target in various cancers, autoimmune disorders, inflammatory bowel diseases, rheumatoid arthritis and multiple sclerosis. Herein, this review focuses on the recent advances of AhR, covering articles published between 2002 and 2022. It summarizes the structure of AhR, regulation of the AhR pathway, physiological role, and AhR ligands, highlighting the vast opportunities and challenges for targeting drug development of AhR.


Assuntos
Receptores de Hidrocarboneto Arílico , Química Farmacêutica , Ligantes , Bifenilos Policlorados/química , Receptores de Hidrocarboneto Arílico/química
15.
Chemosphere ; 308(Pt 2): 136349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084836

RESUMO

Chiral polychlorinated biphenyls (PCBs) have atropisomers that have different axial chiralities and exist as racemic mixtures. However, biochemical processes often result in the unequal accumulation of these atropisomers in organisms. This phenomenon leads to enantiospecific toxicity enhancement or reduction because either of the atropisomers mainly affects toxicity expression. Enantioselective accumulation is caused by cytochrome P450 (CYP, P450) monooxygenases, especially the CYP2B subfamilies. Therefore, this study investigates the metabolism of a chiral PCB in vitro. Both atropisomers isolated from racemic 2,2',3,4,4',5',6-heptachlorobiphenyl (CB183) were metabolized by human CYP2B6, but not rat CYP2B1. This may be due to the difference in the size of the substrate-binding cavities of CYP2B6 and CYP2B1. The stable accommodation of (-)-CB183 in the cavity without any steric hindrance explained the preferential metabolism of (-)-CB183 compared to (+)-CB183. Two hydroxylated metabolites, 3'-OH-CB183 and 5-OH-CB183, were identified. The docking study showed that the 3'-position of the trichlorophenyl ring closely approaches the heme of CYP2B6. To our knowledge, this is the first study to elucidate the structural basis of chiral PCB metabolism by P450 isozymes. These results will help promote the precise toxicity evaluation of chiral PCBs and provide an explanation of the structural basis of chiral PCB metabolism.


Assuntos
Bifenilos Policlorados , Animais , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme , Humanos , Hidroxilação , Isoenzimas/metabolismo , Bifenilos Policlorados/química , Ratos , Estereoisomerismo
16.
Sci Total Environ ; 824: 153870, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176371

RESUMO

Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants distributed worldwide. Existing researches indicated that the immune system is one of the most sensitive indicators of adverse health effects caused by PCBs. We for the first time evaluated the immunotoxic effect of PCB29-pQ, an active quinone-type PCB metabolite. After PCB29-pQ exposure, the body weight of the mice was reduced, but increased the organ index of the spleen and lungs. The morphology and structure of the mouse spleen and lungs were changed, and partial types of lymphocyte subsets in the spleen were significantly reduced. The activation of caspase-3, the significant up-regulation of Bax and the decrease of Bcl-2 indicated occurrence of apoptosis. In addition, mRNA results showed that PCB29-pQ caused the imbalance of Th1/Th2 cytokines and promoted the Th1-type immune response. Taken together, the above results demonstrated that treatment with PCB29-pQ induced spleen immune dysfunction targeting the apoptosis pathway and Th1/Th2 cytokines imbalance in mice. Since the immune system plays a fundamental role in maintaining homeostasis and is strongly involved in the development of diseases, this study provides a new insight into the immunotoxicity mechanism of PCBs.


Assuntos
Bifenilos Policlorados , Animais , Apoptose , Benzoquinonas , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bifenilos Policlorados/química , Bifenilos Policlorados/toxicidade , Quinonas , Células Th2/metabolismo
17.
J Biomol Struct Dyn ; 40(15): 6798-6809, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33645467

RESUMO

Hydroxylated polychlorinated biphenyls (HO-PCBs), as the major metabolites of PCBs, have been reported to act as estrogen receptor ß (ERß) agonists. However, the chemical-biological interactions governing their activities toward ERß have not been elucidated. Therefore, three dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations, to the best of our knowledge, for the first time were performed to explore the correlation between the structures and activities. The best 3D-QSAR model presented higher predictive ability (R2cv=0.543, R2pred=0.5793/R2cv=0.543, R2pred=0.6795) based on comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA), respectively. At the same time, the derived contour maps indicated the important structural features required for improving the activity. Furthermore, molecular docking studies and MD simulations predicted the binding mode and the interactions between the ligand and the receptor. All the results would lead to a better understanding of the specific mechanism of HO-PCBs on estrogen receptor ß (ERß).Communicated by Ramaswamy H. Sarma.


Assuntos
Bifenilos Policlorados , Relação Quantitativa Estrutura-Atividade , Receptor beta de Estrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Bifenilos Policlorados/química
18.
Aquat Toxicol ; 234: 105806, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33819675

RESUMO

We studied the temperature dependence of accumulation and elimination of two polychlorinated biphenyls (PCBs; PCB-70 and PCB-126) and a commercial mixture of congeners of polybrominated diphenyl ethers (PBDEs; DE-71™)) in Northern leopard frog (Lithobates pipiens) tadpoles. We reared tadpoles at 18, 23, or 27 °C for 5.3 or up to 13.6 weeks (longer at cooler temperature where development is slower) on diets containing the toxicants, each at several different toxicant concentrations, and compared tissue concentrations as a function of food concentration and rearing temperature. Following > 1 month of accumulation, tissue concentrations of all three toxicants in exposed tadpoles were linearly related to dietary concentrations as expected for first order kinetics, with no significant effect of rearing temperature.We also raised free-swimming L. pipiens tadpoles for 14 days on foods containing either toxicant at 18 or 27 °C during an accumulation phase, and then during depuration (declining toxicant) phase of 14 days we provided food without toxicants and measured the decline of toxicants in tadpole tissue. All the congeners were eliminated faster at warmer rearing temperature, as expected. Using Arrhenius' equation, we calculated that the apparent activation energy for elimination of both PCB congeners by tadpoles was 1.21 eV (95% confidence interval 0.6-1.8 eV). We discuss how this value was within the range of estimates for metabolic reactions generally (range 0.2 - 1.2 eV), which might include metabolic pathways for biotransformation and elimination of PCBs. Furthermore, we discuss how the lack of an effect of rearing temperature on tadpole near-steady-state tissue residue levels suggests that faster elimination at the warmer temperature was balanced by faster uptake, which is plausible considering the similar temperature sensitivities (i.e., activation energies) of all these processes. Although interactions between toxicants and temperature can be complex and likely toxicant-dependent, it is plausible that patterns observed in tadpoles might apply to other aquatic organisms. Published data on depuration in 11 fish species eliminating 8 other organic toxicants indicated that they also had similar apparent activation energy for elimination (0.82 ± 0.12 eV; 95% confidence interval 0.56 - 1.08 eV), even though none of those studied toxicants were PCBs or PBDEs. Additional research on toxicant-temperature interactions can help improve our ability to predict toxicant bioaccumulation in warming climate scenarios.


Assuntos
Éteres Difenil Halogenados/metabolismo , Bifenilos Policlorados/metabolismo , Rana pipiens/crescimento & desenvolvimento , Animais , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/toxicidade , Larva/química , Larva/efeitos dos fármacos , Larva/metabolismo , Bifenilos Policlorados/química , Bifenilos Policlorados/toxicidade , Rana pipiens/metabolismo , Temperatura , Toxicocinética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
19.
Chem Res Toxicol ; 34(4): 988-991, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33734669

RESUMO

PCB 11 (3,3'-dichloro-biphenyl) is an emerging environmental contaminant that represents a public health concern. Here, we investigated the distribution of PCB 11 and its metabolites in mice exposed orally to PCB 11. PCB 11 tissue levels followed the rank order adipose > lung ∼ muscle > liver > brain > blood 4 h after PCB 11 exposure, which varied from the rank order predicted with a composition-based model. We detected hydroxylated and sulfate metabolites in the liver and sulfate and glucuronide metabolites in serum. These findings lay the groundwork for future toxicity studies with PCB 11.


Assuntos
Bifenilos Policlorados/metabolismo , Animais , Camundongos , Estrutura Molecular , Bifenilos Policlorados/administração & dosagem , Bifenilos Policlorados/química
20.
Clin Exp Dermatol ; 46(5): 896-900, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33638914

RESUMO

Chloracne, also known as metabolizing acquired dioxin-induced skin hamartomas (MADISH), is a rare disfiguring disease related to dioxin exposure. There is a paucity of literature on the clinical manifestations and pathogenesis of chloracne/MADISH. The aim of this study was to assess the clinical features of this very unusual acneiform eruption and to explore the pathogenesis of the disease. This was a retrospective, observational report study was conducted on five patients belonging to the same nuclear family (father, mother and three children) and a relative (father's brother) living in the same house. Histopathological, immunohistochemical, laboratory and toxicological analyses were performed for all patients. The results suggest that CYP1A1 in human skin is a diagnostic biomarker in chloracne, and was positive for all the patients in our sample. Tetrachlorodibenzo-p-dioxin is the most investigated dioxin responsible for chloracne; however, several other agonists, whether dioxin-like or not, can activate the aryl hydrocarbon receptor. To our knowledge, this Italian case series is the first study to suggest polychlorinated biphenyls as a possible cause of an overstimulation of aryl hydrocarbons causing the consequent acneiform eruption.


Assuntos
Erupções Acneiformes/patologia , Cloracne/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Erupções Acneiformes/etiologia , Erupções Acneiformes/metabolismo , Adulto , Biomarcadores/metabolismo , Criança , Cloracne/diagnóstico , Cloracne/etiologia , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Imuno-Histoquímica/métodos , Itália/epidemiologia , Masculino , Paquistão/etnologia , Bifenilos Policlorados/efeitos adversos , Bifenilos Policlorados/química , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/metabolismo , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA